Chapters 5.53
5.53 -Drought Tolerant Bean Varieties (Phaseolus vulgaris) Utilized to Overcome the Negative Effects of Climate Change
Jordan Candido, University of Guelph, Canada
Suggested citation for this chapter.
Candido,J. (2022) Drought Tolerant Bean Varieties (Phaseolus vulgaris) Utilized to Overcome the Negative Effects of Climate Change, In Farmpedia, The Encyclopedia for Small Scale Farmers. Editor, M.N. Raizada, University of Guelph, Canada. http://www.farmpedia.org
Background
During the formation of the International Centre for Tropical Agriculture, or CIAT, in 1967, headquartered in Colombia, the vast majority of starving and malnourished people residing in tropical and sub-tropical regions were smallholder farmers (CIAT, 2017). Thus, the goal of increasing yield potential became a primary priority for CIAT (CIAT, 2017). The current areas of concern are in regard to common bean (Phaseolus vulgaris) production systems, the landscapes where its production occurs, and its yield potential (CIAT, 2015). Millions of farmers within Africa and Latin America depend on high yield outcomes from their bean crops not only to provide food but also to provide an income for themselves and their families. However, due to the high demand of the crop and the drastic effects of climate change, farmers continue to struggle to meet the needs of consumers (CIAT, 2015).
Throughout the previous several decades, the impacts of climate change have been worsening (IFPRI, 2009). Climate change projections state that regions in Sub-Saharan Africa, Latin America, and the Caribbean will be greatly affected by an increase of drought conditions and a rise in average annual temperatures. Due to these conditions, the threats to agricultural production within these land areas are escalating (IFPRI, 2009). Within these regions, the common bean is a staple crop; beans are often referred to as “the meat of the poor” (CIAT, 2016). They contain high levels of protein, fibre, vitamins and micronutrients. An estimated 400 million people residing in the tropics consume beans in their daily diet due to their high nutritional content (CIAT, 2016).
Benefits of Drought Tolerant Bean Varieties to Small Scale Farmers
The world’s largest and most diverse collection of beans is preserved by CIAT (CIAT, 2015). Beans were domesticated within the neo-tropics thousands of years ago, which is where the majority of CIAT’s germplasm originated. With such an extensive range of beans available, the seed bank contains many options for farmers; a variety of colours, nutritional content, and production requirements can be found within these different strains (CIAT, 2015).
Within the previous 15 years, researchers at the Consortium of International Agricultural Research Centres (CGIAR), CIAT’s umbrella organization, have created incredible advances towards solving issues surrounding drought, and increasing the heat-tolerance and nutritional content levels within common bean varieties (CIAT, 2015). CIAT researchers have been able to identify lines that display a tolerance to a 3˚C increase in temperature. These lines derive from a variety of crosses between common and tepary bean species (Phaseolus acutifolius). Currently cultivated traditional bean varieties have been projected to suffer a 20-50% loss by 2050, whereas heat-tolerant bred beans are projected to suffer minimal losses within that same time period (CIAT, 2015).
In order for the new bean varieties to have drought resistant qualities, different traits from different genetic groups were required (Beebe, 2014). Many of the traits which are linked to drought resistance were found within both bean roots and shoots. In order to guarantee a higher success rate of the bean plant, a lengthy root system was required. Additionally, early maturation of the bean crops was a common tactic to combat drought tolerance. A total of 36 genotypes were tested in 2009 during a growing season with significant drought stress. Table 1 shows the field trial results of 5 genotypes grown under different field conditions (Beebe, 2014).
Table 1. Drought associated traits associated with improved bean genotypes
The crops were managed by the irrigation systems for up to 25 days following planting. In order to induce drought stress, the crops were fed a total of 105 mm of water initially followed by an allotted amount of 59 mm of rainwater. An analysis of these trials recommended that the most elite drought tolerant lines expressed heightened stomatal control of transpiration and contained Mexican genetics (Beebe, 2014).
Since 1996, The Pan-Africa Bean Research Alliance (PABRA) has released over 550 new drought resistant bean varieties to many of the countries within Africa in co-ordination with assistance from CIAT (CIAT, 2016). Utilizing germplasm available, the new varieties of beans (known as BIO101 and BIO107) contain 60% more iron and 50% more zinc than those of traditional bean crops. Following the creation of these specially bred beans, a trial with pregnant and young women in Rwanda discovered that the new varieties of beans reduced iron-deficiency and increased immune system strength in each of the women (CIAT, 2016). With these new advances, PABRA will assist future production by making the crops more resilient to climate change threats while simultaneously targeting direct effects on the human population (CIAT, 2015).
The regions within Latin America, Oceania and Sub-Saharan Africa contain the highest percentage of women participating in the agricultural sector. It is within these regions that 60% of the total agricultural production is completed by women (Huyer, 2016). In the world’s least developed regions, 79% of the women contributing to their national economy report that they work in the agriculture sector (Huyer, 2016). When women engage in the agricultural production (with new technologies such as heat-tolerant bean varieties) it creates a sense of empowerment and thus builds essential assets, which the women are then able to use in all other aspects of their lives (Muriel, 2019). With the climate change innovations available within common bean variety crops, female farmers are considered to be important influences (Huyer, 2016). When the women’s knowledge of available innovative resources and access to information increases, it establishes an increase in food supply as well as a more resilient community. Likewise, an attempt is made to close the gender gap, thus providing a higher chance for equal opportunities between both men and women (Huyer, 2016), which would in turn help to positively shape the future of those regions affected.
Gender Issues Associated with Production of Drought Tolerant Bean Varieties
If the farmers, though especially female farmers, are not able to utilize and benefit from these new seed varieties, the food supply decreases and the gender gap increases, which diminishes the resiliency of the community (Huyer, 2016). Additionally, since very little information is available with regards to how poor regions with higher gender discrepancy respond to the threats and impacts of climate change within agricultural production, it is difficult to forecast results for future decades (Huyer, 2016).
Production of Drought Tolerant Beans (Phaseolus Vulgaris) in Arid Regions
It is necessary that farmers are equipped with all of the relevant information required to achieve the highest quality results from their newly adapted bean varieties (PABRA, 2016). Becoming knowledgeable about land preparation, crop management and harvesting is vital to ensuring success within production systems. Integrated crop management (ICM) is a holistic approach utilized by PABRA that assists farmers throughout their cultivation. The desired outcome from ICM is to give smallholder farmers access to cost-effective, climate change resistant crops. This is achieved by working with many international partners. Multiple techniques exist within ICM such as pest management, soil quality, planting and intercropping. With such techniques, approximately six million farmers have been able to improve their bean yields. The ICM research encompasses a variety of areas:
- Cropping systems: Assessing the different varieties of beans while comparing the benefits of intercropping and rotation.
- Inputs: Evaluating the varieties of fertilisers available which are best suitable for the farmer’s chosen bean variety.
- Water Management: In order to combat the negative effects of climate change and drought, improved practices regarding irrigation and water conservation are fundamental.
- Soil Fertility: By working with the technologies available within the private sector, this promotes biological nitrogen fixation capabilities which increases yield potential.
- Pest and Disease Management: Bean varieties are frequently affected by an array of pests and diseases which have very negative effects on crop yields. PABRA analyses integrated pest management systems with utilization of both biological and chemical methods (PABRA, 2016).
Helpful Links to Get Started
Resource for Requesting Seeds:
https://genebank.ciat.cgiar.org/genebank/inforequestmaterial.do
CIAT innovations on heat-tolerant beans:
What is ‘Seed Security’?
https://www.youtube.com/watch?v=xvqSaw49wnE
Agricultural Business Skills for seed-producers:
https://cgspace.cgiar.org/bitstream/handle/10568/54569/handbook_3_english.pdf
Crop Management:
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/newsroom/features/?&cid=nrcs143_023350
Smallholder Farmers Stories Who Have Adopted Drought Tolerant Bean Varieties:
https://www.youtube.com/watch?v=O2UqFbnOc6U
References
1. Beebe, S.E., et al. (2014) Common beans, biodiversity, and multiple stresses: a. challenges of drought resistance in tropical soils. Crop and Pasture Science 65, 667-675. Retrieved from https://www.publish.csiro.au/cp/cp13303
2. Buruchara, R. (2011). Development and Delivery of Bean Varieties in Africa: The Pan- a. African Bean Research Alliance (PABRA) Model, p.227-245. African Crop Science Journal. Retrieved from https://www.ajol.info/index.php/acsj/article/view/74168/64827
3. Huyer, S, et al. (2016). CCAFS Gender and Social Inclusion Strategy, p.8-11. The a. Consortium of International Agricultural Research Centres. Retrieved from https://cgspace.cgiar.org/handle/10568/72900
4. International Food Policy Research Institute (IFPRI). (2009). Climate Change: Impact a. on Agriculture and Costs of Adaptation. Retrieved from https://books.google.ca/books?hl=en&lr=&id=1Vpe0JvYTJYC&oi=fnd&pg=PR7&ots=Xmu2c8Swla&sig=GX4sDC1DiDa7I5408r0a3nz2sJo&redir_esc=y#v=onepage&q&f=false
5. Muriel, J., et al. (2019). The Abbreviated Women’s Empowerment in Agriculture Index a. (A-WEIA). Project Results for ‘His and Hers, Time and Income: How Intra Household Dynamics Impact Nutrition in Agricultural Households’. The International Centre for Tropical Agriculture. Retrieved from https://cgspace.cgiar.org/handle/10568/101141
6. The International Centre for Tropical Agriculture (CIAT). (2015). Developing Beans that a. Can Beat the Heat. The Consortium of International Agricultural Research Centres. Retrieved from https://ciat-library.ciat.cgiar.org/articulos_ciat/biblioteca/DEVELOPING_BEANS_THAT_CAN_BEAT_THE_HEAT_lowres%20(2).pdf
7. The International Centre for Tropical Agriculture (CIAT). (2016). Beans. Retrieved from a. https://ciat.cgiar.org/what-we-do/breeding-better-crops/beans/.
8. The International Centre for Tropical Agriculture (CIAT). (2017). Fifty Years and Fifty a. Wins, p.4-18. The Consortium of International Agricultural Research Centres. Retrieved from https://cgspace.cgiar.org/bitstream/handle/10568/89145/50_WINS_WEB02.pdf?sequence=1&isAllowed=y